1)a) $\lim _{x \rightarrow 0} \frac{\sqrt{x^{2}+1}-1}{x}=\lim _{x \rightarrow 0} \frac{\sqrt{x^{2}+1}-1}{x} \bullet \frac{\sqrt{x^{2}+1}+1}{\sqrt{x^{2}+1}+1}=\lim _{x \rightarrow 0} \frac{\left(x^{2}+1\right)-1}{x\left(\sqrt{x^{2}+1}+1\right)}=\lim _{x \rightarrow 0} \frac{x^{2}}{x\left(\sqrt{x^{2}+1}+1\right)}=$ $\lim _{x \rightarrow 0} \frac{x}{\sqrt{x^{2}+1}+1}=\frac{0}{\sqrt{0^{2}+1}+1}=0$
b) $\quad \lim _{x \rightarrow-1^{+}} \frac{2 x-3}{x^{2}-1}=\lim _{x \rightarrow-1^{+}} \frac{2 x-3}{(x+1)(x-1)}=\frac{2(-1)-3}{\left(-1^{+}+1\right)(-1-1)}=\frac{-5}{\left(0^{+}\right)(-2)}=\frac{-5}{0^{-}} \rightarrow+\infty$ Limit \nexists.

Or
Upon substitution, one gets the form $\frac{-5}{0}$ so the limit does not exist but the functional values tend to $\pm \infty$. The question is: which one?!

The numerator approaches a negative number as $x \rightarrow-1$.
The denominator factors as $(x+1)(x-1)$ and the first factor approaches 0 from the positive side as $x \rightarrow-1$ and the second factor approaches a negative number as $x \rightarrow-1$, which makes the full denominator approaching 0 from the negative side as $x \rightarrow-1$.

As the numerator is approaching a negative number as $x \rightarrow-1$ and the denominator is approaching 0 from the negative side as $x \rightarrow-1$, we have determined that the functional values are overall positive as $x \rightarrow-1$.

From the first observation, we conclude that the functional values are increasing without bound.
(aka: $+\infty$)
c) $\lim _{x \rightarrow-\infty} \frac{\sqrt{2 x^{2}+1}}{x+2}=\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}\left(2+\frac{1}{x^{2}}\right)}}{x\left(1+\frac{2}{x}\right)}=\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}} \sqrt{2+\frac{1}{x^{2}}}}{x\left(1+\frac{2}{x}\right)}=\lim _{x \rightarrow-\infty} \frac{-x \sqrt{2+\frac{1}{x^{2}}}}{x\left(1+\frac{2}{x}\right)}=$
$\lim _{x \rightarrow-\infty} \frac{-\sqrt{2+\frac{1}{x^{2}}}}{1+\frac{2}{x}}=\frac{-\sqrt{2+0}}{1+0}=-\sqrt{2}$

Or
$\lim _{x \rightarrow-\infty} \frac{\sqrt{2 x^{2}+1}}{x+2}=\lim _{x \rightarrow-\infty} \frac{\frac{\sqrt{2 x^{2}+1}}{x}}{\frac{x+2}{x}}=\lim _{x \rightarrow-\infty} \frac{\frac{\sqrt{2 x^{2}+1}}{-\sqrt{x^{2}}}}{\frac{x+2}{x}}=\lim _{x \rightarrow-\infty} \frac{-\sqrt{\frac{2 x^{2}+1}{x^{2}}}}{\frac{x+2}{x}}=\lim _{x \rightarrow-\infty} \frac{-\sqrt{2+\frac{1}{x^{2}}}}{1+\frac{2}{x}}=$
$\frac{-\sqrt{2+0}}{1+0}=-\sqrt{2}$
d) $\quad \lim _{x \rightarrow 0} \frac{\tan x}{x}=\lim _{x \rightarrow 0} \frac{\frac{\sin x}{\cos x}}{x}=\lim _{x \rightarrow 0} \frac{\sin x}{x \cos x}=\lim _{x \rightarrow 0} \frac{\sin x}{x} \bullet \lim _{x \rightarrow 0} \frac{1}{\cos x}=1 \bullet \frac{1}{\cos 0}=\frac{1}{1}=1$
2)a) $f(x)=\left(4-x^{2}\right) e^{x} \rightarrow f^{\prime}(x)=\left(4-x^{2}\right)^{\prime} e^{x}+\left(4-x^{2}\right)\left(e^{x}\right)^{\prime}=(-2 x) e^{x}+\left(4-x^{2}\right) e^{x}$
b) $\quad f(x)=\frac{x^{2}+1}{\cos x+1} \rightarrow f^{\prime}(x)=\frac{(\cos x+1)\left(x^{2}+1\right)^{\prime}-\left(x^{2}+1\right)(\cos x+1)^{\prime}}{(\cos x+1)^{2}}=\frac{(\cos x+1)(2 x)-\left(x^{2}+1\right)(-\sin x)}{(\cos x+1)^{2}}$
c) $\quad f(x)=\tan (1+\sin x) \rightarrow f^{\prime}(x)=\sec ^{2}(1+\sin x) \bullet(\cos x)$
3) $\quad f(x)= \begin{cases}x^{2} & x<1 \\ 2 & x=1 \\ e^{x-1} & x>1\end{cases}$
a) $\quad \lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} e^{x-1}=e^{1-1}=e^{0}=1$
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} x^{2}=1^{2}=1$
b) Is f continuous at $x=1$?

Condition \#1: Does $\lim _{x \rightarrow 1} f(x)$ exist? (ie. does $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)$?)
Yes. The two one-sided limits both equal 1 .
Condition \#2: Is $f(1)$ defined?
Yes it is. $f(1)=2$
Condition \#3: Does $\lim _{x \rightarrow 1} f(x)=f(1)$?
No it does not. $1 \neq 2$
Therefore, as all three conditions for continuity are not met, f is not continuous at $x=1$.
4) $f(x)=\frac{1}{x}$

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\frac{1}{x+h}-\frac{1}{x}}{h}=\lim _{h \rightarrow 0} \frac{\frac{1}{x+h}\left(\frac{x}{x}\right)-\frac{1}{x}\left(\frac{x+h}{x+h}\right)}{h}=\lim _{h \rightarrow 0} \frac{\frac{x-(x+h)}{x(x+h)}}{h}= \\
& \lim _{h \rightarrow 0} \frac{\frac{-h}{\frac{x(x+h)}{h}}=\lim _{h \rightarrow 0} \frac{-h}{x h(x+h)}=\lim _{h \rightarrow 0} \frac{-1}{x(x+h)}=\frac{-1}{x(x+0)}=\frac{-1}{x^{2}}}{}=\text { (}{ }^{2}=
\end{aligned}
$$

5) Given: $g(x)=f\left(x^{2}+1\right)$ and $f^{\prime}(2)=-1$. Find: $g^{\prime}(1)$.

Using the chain rule for a composite function: $g^{\prime}(x)=f^{\prime}\left(x^{2}+1\right) \bullet\left(x^{2}+1\right)^{\prime}=f^{\prime}\left(x^{2}+1\right) \bullet 2 x$ With substitution, $g^{\prime}(1)=f^{\prime}\left(1^{2}+1\right) \bullet 2(1)=f^{\prime}(2) \bullet 2=-1 \bullet 2=-2$
6) Prove: if $f^{\prime}(x)$ and $g^{\prime}(x)$ exist, then $(f(x)+g(x))^{\prime}=f^{\prime}(x)+g^{\prime}(x)$
$(f(x)+g(x))^{\prime}=\lim _{h \rightarrow 0} \frac{[f(x+h)+g(x+h)]-[f(x)+g(x)]}{h}=\lim _{h \rightarrow 0} \frac{f(x+h)+g(x+h)-f(x)-g(x)}{h}=$ $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)+g(x+h)-g(x)}{h}=\lim _{h \rightarrow 0} \frac{[f(x+h)-f(x)]+[g(x+h)-g(x)]}{h}=$
$\lim _{h \rightarrow 0}\left[\frac{f(x+h)-f(x)}{h}+\frac{g(x+h)-g(x)}{h}\right]=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}+\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}=f^{\prime}(x)+g^{\prime}(x)$.
7) Determine an equation of the tangent line to the curve $y^{2}-x y+x^{2}=1$ at the point $(1,1)$.

By using implicit differentiation:
$\frac{d\left(y^{2}-x y+x^{2}\right)}{d x}=\frac{d(1)}{d x} \rightarrow 2 y \bullet y^{\prime}-\left[(1) y+x y^{\prime}\right)+2 x=0 \rightarrow 2 y y^{\prime}-y-x y^{\prime}+2 x=0 \rightarrow$
$2 y y^{\prime}-x y^{\prime}=y-2 x \rightarrow(2 y-x) y^{\prime}=y-2 x \rightarrow y^{\prime}=\frac{y-2 x}{2 y-x}$
At the point (1,1), $y^{\prime}=\frac{(1)-2(1)}{2(1)-(1)}=-1$.
Using the formula $y-y_{1}=m\left(x-x_{1}\right)$, we obtain $y-1=-1(x-1)$ as the tangent line.
Or
$\left.\frac{d\left(y^{2}-x y+x^{2}\right)}{d x}=\frac{d(1)}{d x} \rightarrow 2 y \bullet y^{\prime}-\left[(1) y+x y^{\prime}\right)\right]+2 x=0$
Upon substitution of the point (1,1), we get 2(1) $\left.\bullet y^{\prime}-\left[1(1)+(1) y^{\prime}\right)\right]+2(1)=0$
which yields $2 y^{\prime}-1-y^{\prime}+2=0 \rightarrow y^{\prime}=1$.
Using the formula $y-y_{1}=m\left(x-x_{1}\right)$, we obtain $y-1=-1(x-1)$ as the tangent line.
8) Yertle the turtle(s) ...

Given: $\frac{d y}{d t}=-20 \mathrm{~m} / \mathrm{h}$ and $\frac{d x}{d t}=-30 \mathrm{~m} / \mathrm{h}$
West and North are at right angles to each other.
Goal: Find $\frac{d D}{d t}$ when $x=3 \mathrm{~m}$ and $y=4 \mathrm{~m}$.

Relationship: $D^{2}=x^{2}+y^{2}$
As D, x and y are all implicit functions of time, we can perform implicit differentiation wrt time.
$\frac{d\left(D^{2}\right)}{d t}=\frac{d\left(x^{2}+y^{2}\right)}{d x} \rightarrow 2 D \bullet \frac{d D}{d t}=2 x \bullet \frac{d y}{d t}+2 y \frac{d y}{d t} \quad \rightarrow \quad D \bullet \frac{d D}{d t}=x \bullet \frac{d y}{d t}+y \frac{d y}{d t}$
This yields $\frac{d D}{d t}=\frac{x \bullet \frac{d y}{d t}+y \frac{d y}{d t}}{D}$.
Aside: Find D when $x=3 m$ and $y=4 m \cdot D^{2}=x^{2}+y^{2} \rightarrow D^{2}=3^{2}+4^{2} \rightarrow D=5$
Therefore: $\frac{d D}{d t}=\frac{x \bullet \frac{d y}{d t}+y \frac{d y}{d t}}{D}=\frac{3 \bullet(-30)+4(-20)}{5}=\frac{-170}{5}=-34$
The distance between the turtles is decreasing at a rate of $34 \mathrm{~m} / \mathrm{h}$ at this time.

